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1. IN-l RODUCT ION

1 he precipitation radar planned for the ‘1 rop-

ical Rainfall Measuring Mission (‘I RMM) will be the
first of its kind to measure vertical rainfalldistribu-
tions from space. ‘1 he 1 RMM radar will scan :| 20°
across the nadir track. ‘1 he range- gatedbackscat-
tering powers over the entire scan swath will be mea-
sured, classified (rain versus no- rain), averaged, and
processed to derive the rainfall rates, With this ob-
servation scheme, there are two major reasons why it
is important to know the rain-perturbed backscatter-
ing coefficient of the surface background (50)-1irsl,
as the radar scans away from nadir, the return sig-
nals within the same pulse volume will include sig-
nals backscattered from both the rain and the sur-
face background. By knowing &g, the surface return
can be removed and the rain rate near the surface
can then be deduced. With the conventional ap-
proach, fowould be approximated by the rain-free
coefficient 00 obtained either in the vicinity of the
rainy area or from prior observations of the same
area during dry periods, however, the error associ-
ated with such an approximation may significantly
degrade the accuracy of the inferred rainfall intensi-
ties. It is therefore desirable to determine 0o directly
from the radar measurements acquired in the rainy
area.

In this paper, we discuss a new algorithm
for estimating @¢ as well as the reflectivity and atten-
uation coefficients in the rain above. 1 his algorithm
is intended for use with single-frequency range—gated
radar echo measurements such as those acquired by
the TRMM radar. Based on the expected ‘1RMM
radar performance characteristics, speckle is likely to
be a major source of “noise” in the radar backscatter
measurements, and we derive a maximum- likelihood
estimator to minimize the speckle--induced errors in
the retrieval of the surface backscattering coefficient.
In addition to stochastic sources of error, the fact
that only one frequency is available causes delerinin-
1s{ic ambiguities to be present in the radar returns.
We account for the stochastic and deterministic am-
biguitiesin the retrieval of the rain characteristics by
using an optimal non-linear filtering approach.

“1 he details of the problem and the algo
rithms we derive are described in the following, sec-
tions. This research was carried out at the Jet Propul-
sion 1 aboratory, California Institute of ‘1 ethnology,
under contract with the National Aeronautics and
Space Administration,
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We consider the situation pictured in fig-
ure 1. Specifically, calling the radar beam incidence
angle ¢ and the range resolution dr, we assume that
we receive J pieces of rain—only data, namely ‘the
echo powers ¢; from ranges IL's - j dr,

Figure I:ofl-nadir viewing geometry

g; = echofromrange Kg - jdr,1 < j < J
~ (yAe kg 0.y, (1)
where
1y = rain reflectivity coefficient

k: rain attenuation coefficient

= (known gain) (calibration constant)
a; = 0.2log(10) (R - | dr)
) thermal noise variance

U; . speckle variance at range fg- jdr



followedby N pieces of surface- cluttered data, namely

the echo powers i from ranges Hy-1z' dr,

Pi =  echo from range Hp-idr,0<i<N-1
5\'(1[/1,‘(7-6‘*-[ (‘70]1','(" koo )]?) Vi (?)

where, this time,

0o = rain- modified surface backscattering coeft
/]i;]‘,i B beam-filling-dependent gains

i = 0.2log(10) . (o -1 1 dr)

17 = 0.2log(10) . I

V; +  speckle variance from range J¢g-17dr

Since we have J-} N equations in three unknowns,
one would expect the problem of determining 7,60
and k to be easy to solve. However, the data are
contaminated by speckle noise, whose variance can
be of the same magnitude as the parameters we need
to estimate. 1 he best approach is to try tomake a
statistically optimal estimate.

Specifically, assuming that each Uj is the
arithmetic average of the squared magnitude of Af
independent complex standard normal random vari-
ables, where M is the number of radar pulses trans.
mitted along one fixed scan angle (M ~ 60 for
1 RMM), the probability density function f for each
Uj is M
Q) - M@!f‘),,_ 1

(M - €
It follows from the equation for f that the maximum
likelihood estimator for 7],k given the data ¢; is ob-

Mu (3)

tained by looking for the values 7,k of 33,4 which
minimize the quantity

1Y gj 9;
) W - B, Py (4)
J 12_1 1’j(7/,k) ]’j(u,k)

where Fj(5,%) =1 Ae” @s* 432 once the max-
imum likelihood estimates 1),k are determined, one
must similarly look for the value of &3 which mini-

mizes the likelihood function

1 i

- log ~ ~-"" - d
N b Gi(i), 50, k) ®)
where ("i(fl,50,k):7ﬁlAiC>&"x'-| aolsic PR 32
“[ his would in principle determine the optimal esti-
mate for 0g. Yet, in order to derive this first- cut
algorithm, we have made one implicit assumption
that is not realistic,

Indeed, note that we have not specified the
values of J or N. In fact, N is completely deter-
mined by the geometry, However, J can a priori be
arbitrary. In reality, we cannot allow J to be too
large, for we would then be assuming that 2 and k
are constant over a long slant distance J dr, a gen-
erally unjustifiable hypothesis. Butif J is small, we
would be left with too little data to beat down the
speckle noise, We must therefore look for a way to
estimate 7 and k in the general case where they are
not a priori assumed to be constant,

We are thus naturally led to assume that
k is in fact a function of range, k =k(»), which
we must determine using the measured echo power
datag. So far, we had been writing ¢ as a discrete
variable. For consistency, we now represent the rain
echo power data as a function of continuous range
¢(7).Rather than introduce yet another unknown
function 7(r), we assume a power- law k-7 relation
y = &k7, and set out to estimatethe unknowns
k(r),6,7 given the data g(r).

Since k is now an unknown SJunction, it
would be quite unwieldy to discretize it and attempt
a mamximum likelihood approach. On the other
hand, we can consider it a stochastic process, with
the range variable » playing the role of time, then try
to use optimal stochastic filtering techniques. In-
deed, if we represent the relationship between the
data ¢ and the unknowns k,6, and % by the equa-
tion

a(r) - (A § k(r)Y 10- 02e() >:2) U (6)

where ¢(r): [{ k(1) dl is the cumulative attenua-
tion, and if we make some simple assumptions about
the dynamics of k, i.e. about its behavior as a func-
tion », we should be able to derive the differential
equation governing the evolution with 1 of the prob-
ability density function 7% (k,6,v)of k, 8, at range
r, conditioned on the data {¢(t),t <»}.Further-
more, if our model for the dynamics is indeed simple,
we might be able to solve the differential equation
explicitly, thus obtaining an algorithm for estimat-
ing &(r),8, and ¥. We would then be able to use
k= k(ko) and - 6k(10)Y as our estimates
for the near-surface reflectivity and attenuation co
efficient in order to find the maximurm-likelihcod
estimate for 60 as described earlier.

I bus, as soon as we settle on a simple
model for the dynamics of &, we should be able to
write down the corresponding optimal algorithm to



